2021 2nd International Conference on Modern Education and Information Management (ICMEIM 2021)
Speaker
Home / Speaker


GordanaKierans.png

Pro. Gordana Kierans

Shenzhen Technology University (SZTU)


Title: Technological Advancements in Indian Education System

Abstract: India is known as one of the world's top education destination in the global education industry. With some of the best universities and colleges India, has been successful in attracting bright talents all over the world. Indian education system is robust and built on strong foundations. According to Indian Brand Equity Foundation Indian education market is currently pegged at $100 billion with higher education contributing to 59.7%, school education at 38.1%, pre-school at 1.6% and the remainder 0.6% consists of technology and multi-media based education. According, to a report released by All India Survey on Higher Education 2018-2019 by Ministry of Human Resource Development the total enrolment in higher education has been estimated to be 37.4 million with 19.2 million male and 18.2 million female. Female constitute 48.6% of the total enrolment. Distance enrolment constitutes about 10.62% of the total enrolment in higher education, of which 44.15% are female students. Availability of broadband and hi-speed internet along with low cost computers to tier 2 and tier 3 cities has made learning seamless without any glitches. There is a need for improvement in higher education so that the knowledge of students, faculties and staff can be improved.  By adopting the latest technologies, we will be able to achieve this. Machine learning brings out the significant progressive changes. Machine Learning is revolutionizing the entire education system and the nation. This is achieved by Adaptive Learning, Predictive analytics, Increasing efficiency, personalized learning, Learning Analytics and accurately grading assignments. The author focus on how the early warning system can be developed for a student who is at risk of graduation by considering the behavioural and other data of students. This work also presents how machine learning helps the faculties to concentrate on each and every student when the class size is very huge, thereby discussing on the data management in the education scenario.